
ST. JEAN DE BREBEUF MATHEMATICS

CHAPTER STATES

KNOW YOUR CALCULATOR

EXPONENT KEY

→ Raises a number to an exponent

EXAMPLE:

Evaluate 2^3 Press $2 \rightarrow y^x \rightarrow 3 \rightarrow =$

FUNDAMENTALS

EXPONENT LAWS

1. EXPONENT LAW FOR MULTIPLICATION (PRODUCT LAW)

Write $2^3 \times 2^4$ as a single power and evaluate

$$2^{3} \times 2^{4}$$
 $= 2^{3+4}$
 $= 2^{7}$

GENERAL FORMULA FOR MULTIPLYING POWERS

$$a^m \times a^n = a^{m+n}$$

Rule: When multiplying powers of the same base, you keep the base and ADD the exponents.

CHAPTER OF EXPONENT LAN

1. EXPONENT LAW FOR MULTIPLICATION (PRODUCT LAW)

PRACTICE

1.
$$2^{-4} \times 2^{6}$$
 2. $5^{-2} \times 5^{7}$

$$=2^{-4+6}$$

$$=5^{-2+7}$$

$$=2^{2}$$

$$=5^{5}$$

$$=4$$

$$=3125$$

3.
$$2^{7} \times 2^{-3}$$

$$= 2^{7} \times 2^{-3}$$

$$= 2^{7-3}$$

$$=2^{4}$$

GENERAL FORMULA FOR MULTIPLYING POWERS

$$a^m \times a^n = a^{m+n}$$

Rule: When multiplying powers of the same base, you keep the base and ADD the exponents.

2. EXPONENT LAW FOR DIVISION (QUOTIENT LAW)

EXAMPLE:

Write $7^4 \div 7^2$ as a single power and evaluate

$$7^{4} \div 7^{2}$$

$$= 7^{4-2}$$

$$= 7^{2}$$

$$= 49$$

GENERAL FORMULA FOR DIVIDING POWERS

$$a^m \div a^n = a^{m-n}$$

Rule: When dividing powers of the same base, you keep the base and SUBTRACT the exponents.

EXPONENT LAWS

2. EXPONENT LAW FOR DIVISION (QUOTIENT LAW)

PRACTICE:

1.
$$5^{5} \div 5^{2}$$
 2. $\frac{3^{2}}{3^{-7}}$

$$= 5^{5-2} = 3^{2(-7)} = 19683$$

$$= 5^{3} = 3^{2+7}$$

 $=3^{9}$

$$=125$$

3.
$$\frac{7^{-3}}{7^{-5}} = 7^{-3+5}$$

= 7^{2}
= 7^{-3-5}

GENERAL FORMULA FOR DIVIDING POWERS

$$a^m \div a^n = a^{m-n}$$

Rule: When dividing powers of the same base, you keep the base and SUBTRACT the exponents.

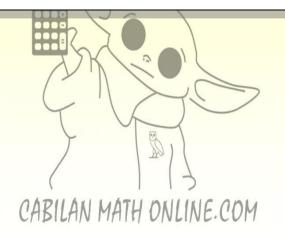
3. POWER OF A POWER LAW

EXAMPLE:

Express $(9^2)^3$ as a single power and evaluate

$$(9^{2})^{3}$$

$$= 9^{2 \times 3}$$


$$= 9^{6}$$

$$= 531441$$

GENERAL FORMULA FOR POWER LAW

$$(a^m)^n = a^{m \times n}$$

Rule: When evaluating powers within brackets, you MULTIPLY the exponents.

CHAPTER 6.1 EXPONENT LAV 4 (PO) 1 4 / T L. 1 / S

3. POWER OF A POWER LAW

PRACTICE:

1.
$$(2^3)^4$$

$$= 2^{3\times4}$$

$$= 2^{12}$$

2.
$$(4^{5})^{2}$$

= $4^{5\times2}$
= 4^{10}
= 1048576

GENERAL FORMULA FOR **POWER LAW**

$$(a^m)^n = a^{m \times n}$$

Rule: When evaluating powers within brackets, you MULTIPLY the exponents.

4. POWER OF A PRODUCT LAW

Simplify (4a³)²

$$(4a^3)^2 = (4)^2 (a^3)^2$$

 $=16a^{3\times 2}$

 $=16a^{6}$

*Apply the exponent to both the coefficient and the variable

GENERAL FORMULA FOR POWER OF A PRODUCT LAW

 $(ab)^n = a^nb^n$

Rule: When a co-efficient and a variable are inside the brackets, you must distribute the exponent

BHAPIER BEXPONENT LAV

4. POWER OF A PRODUCT LAW

Simplify the following:

(a)
$$(3x^2)^5$$

$$=(3)^5(x^2)^5$$

$$=243x^{2\times 5}$$

$$=243x^{10}$$

(b)
$$(-5y^3)^4$$

$$= (-5)^4 (y^3)^4$$
$$= 625 y^{3\times4}$$

$$=625 y^{3\times4}$$

$$=625 y^{12}$$

GENERAL FORMULA FOR POWER OF A PRODUCT LAW

$$(ab)^n = a^nb^n$$

Rule: When a co-efficient and a variable are inside the brackets, you must distribute the exponent

5 The Zero Exponent Law

Use a calculator to evaluate the following:

a)
$$7^{\circ} = \frac{1}{1}$$

b)
$$(-3)^0 = \frac{1}{}$$

c)
$$k^0 = \frac{1}{1}$$

THE EXPONENT ZERO

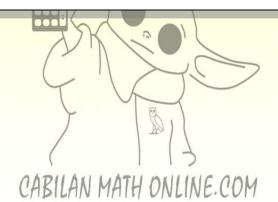
Any base raised to the exponent zero always equals
ONE (1)

6. Negative Exponents

EXAMPLE:

Express 4-3 as a single power and evaluate

$$4^{-3}$$


$$= \left(\frac{1}{4}\right)^3$$

$$=\frac{(1)^3}{(4)^3}$$

$$=\frac{1}{64}$$

STEPS:

- 1. Write the base as a reciprocal (ie. "flip" the base)
- 2. Make the exponent **positive**
- 3. Raise the numerator and denominator by the exponent

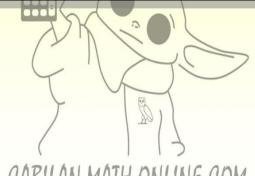
6. Negative Exponents

PRACTICE:

Express each as a single power and evaluate

1.
$$3^{-5}$$

$$= \left(\frac{1}{3}\right)^{5}$$


$$= \frac{(1)^{5}}{(3)^{5}}$$

$$=\frac{1}{243}$$

2.
$$\frac{4^{3}}{4^{5}}$$
 *Subtract exponents first!
$$=4^{3-5}$$
$$=4^{-2}$$
$$=\left(\frac{1}{4}\right)^{2}$$
$$=\frac{(1)^{2}}{(4)^{2}}$$
$$=\frac{1}{16}$$

STEPS:

- 1. Write the base as a reciprocal (ie. "flip" the base)
- 2. Make the exponent **positive**
- 3. Raise the numerator and denominator by the exponent

6. Negative Exponents

PRACTICE:

Express each as a single power and evaluate

3.
$$(2^{-2})^3$$
 *Multiply exponents first!

$$= 2^{-2 \times 3}$$
$$= 2^{-6}$$

$$=\left(\frac{1}{2}\right)^6$$

$$=\frac{(1)^6}{(2)^6}$$

$$=\frac{1}{64}$$

STEPS:

- 1. Write the base as a reciprocal (ie. "flip" the base)
- 2. Make the exponent **positive**
- 3. Raise the numerator and denominator by the exponent

END OF DAY 1

OPERATION 2 Simplifying Expressions

- a) (29⁵)0 *Multiply the exponents first!
 - $=29^{5\times0}$
 - =1

b) $\frac{6^8 \times 6^{-2}}{(6^2)^2} \leftarrow \text{*Multiply}$ exponents

$$=\frac{6^{8+(-2)}}{6^{2\times 2}}$$

$$=\frac{6^{8-2}}{6^4}$$

*Add exponents

$$=\frac{6^{6}}{6^{4}}$$

$$=6^{6-4}$$

$$=6^{2}$$

c)
$$k^{-5} \times k^3$$
 *Add exponents! d)

$$=k^{-5+3}$$
$$=k^{-2}$$

$$= \left(\frac{1}{k}\right)^{2} \text{ *Flip the base}$$
*Make exponent positive

$$=\frac{(1)^2}{(k)^2}$$

Raise numerator $\overline{(k)^2}$ and denominator by the exponent

$$=\frac{1}{k^2}$$

$$\frac{n^{3} \times n^{3}}{(n^{4})^{2}} = \frac{n^{3+3}}{n^{4\times 2}}$$

$$= \frac{n^{6}}{n^{8}}$$

$$= n^{6-8}$$

$$= n^{-2}$$

$$= \left(\frac{1}{n}\right)^{2}$$

$$= \frac{(1)^{2}}{(n)^{2}}$$

*Add exponents!

$$= \frac{n^{3+3}}{n^{4+2}}$$
*Multiply exponents!

$$= \frac{n^{6}}{n^{8}}$$
*Subtract exponents!

$$= n^{6-8}$$

$$= n^{-2}$$
*Flip the base
$$= (\frac{1}{n})^{2}$$
*Make exponent positive

$$= (1)^{2}$$
Raise numerator and denominator by the exponent
$$= \frac{1}{n^{2}}$$
*CABILAN MATH ONLINE.COM

*Add the exponents

$$=\frac{42m^{-2+5}}{2m}$$

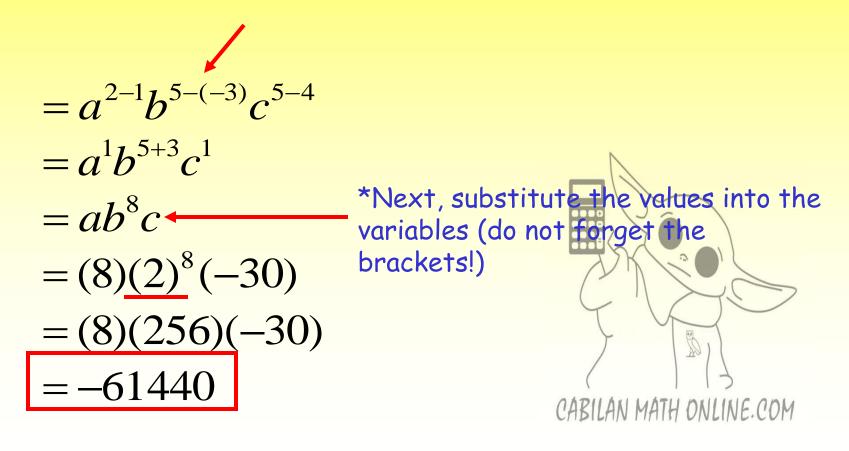

$$=\frac{42m^3}{2m}$$

*Divide the coefficients

*Subtract the exponents

$$=21m^{3-1}$$

$$=21m^2$$


CABILAN MATH ONLINE.COM

OPERATION 3

Using exponent laws, simplify the expression $\frac{a^2b^5c^5}{ab^{-3}c^4}$ and evaluate for a = 8, b = 2 and c = -30

SOLUTION

First, subtract the exponents for each variable separately!

EXAMPLE 4

The sound produced in the first row of a rock concert is 110 dB and the sound produced from a CD player is 60 dB.

a) If 80 dB can be expressed as 10^8 , re-write the decibel readings as powers with base 10.

$$110dB$$
 $60dB$
= 10^{11} = 10^{6}

b) Calculate how many times louder the rock concert is compared to the CD player.

$$\frac{10^{11}}{10^{6}}$$

$$= 10^{11-6}$$

$$= 10^{5}$$

$$= 100000$$

Therefore, the rock concert is 100 000 times louder than the CD player.

HOMEWORK

Page 349

(Day 1) #1ac, 3, 4bd, 5ad

(Day 2) 7abc, 9acd, 10ab, 12adef